Towards the Preservation of the Scientific Memory

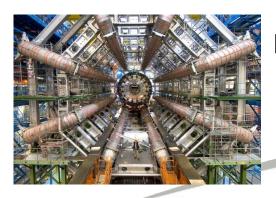
Brian Matthews

Shirley Crompton, Catherine Jones, Simon Lambert

Scientific Computing Department

STFC Facilities – driving scientific research

Neutron Sources



High Power Lasers

Particle Physics

Telescopes

10 Years of Curation Research at STFC

- "Curation Coalface Group"
- Claddier : JISC 2005-7
- A programme of projects:
 - CASPAR Cultural, Artistic and Scientific knowledge for Preservation, Access and Retrieval. 2006-2009.
 - SoftPres: Tools and Guidelines for Preserving and Accessing Software Research Outputs,, 2008-09
 - ACRID: Advanced Climate Research Infrastructure for Data, 2010-11
 - ODE: Opportunities for Data Exchange, 2010-12,
 - Mardi-Gros: 2011-12
 - SCAPE (Scaleable Preservation Environment) 2011-14
 - SCIDIP-ES (Science Data Infrastructure for Preservation Earth Science) 2011-14
 - APARSEN, 2011-14
- At least 6 papers at DCC Conferences
- Time to take stock and see how it fits together

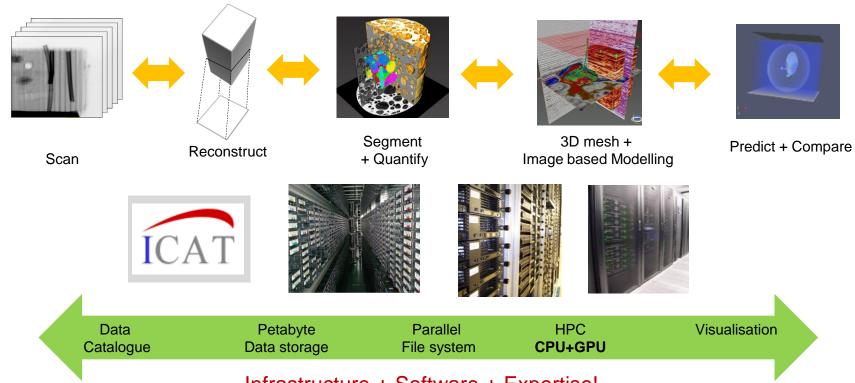
Diamond Data Rates

- Ever rising data rates
 - Early 2007: Diamond first user.
 - No detector faster than ~10 MB/sec.
 - Early 2009:
 - first Pilatus 6M system @ 60 MB/s.
 - Early 2011:
 - first 25Hz Pilatus 6M system @150 MB/s.
 - Early 2013:
 - First 100 Hz Pilatus 6M system @ 600 MB/sec
 - 2015: Latest detectors such as Percival (6000 MB/sec)
- Doubling the data rates every 7.5 months.
- Tomography: Dealing with high data volumes
 - 200Gb/scan,
 - ~5 TB/day (one experiment at DLS)
- MX: smaller files, but a lot more experiments
- Took first Pb end 2013 (after 6 years of operation)
 - Now up to their 2nd Pb and into their 3rd
 - Diamond catalogue containing over 600 million files
 - Cataloguing 12000 Files per minute

PILATUS3 S and X product pages ...

A special case?

	Number of Users shared between facilities															
	ALBA	BER II	DESY	DLS	ELETT RA	ESRF	FRM-II	ILL	ISIS	LLB	SINQ	SLS	SOLEIL	neutron	photon	all
ALBA	773	7	61	58	51	281	2	51	13	5	10	77	105	69	400	773
BER II	7	1563	115	46	27	179	157	383	198	98	191	62	36	580	329	1563
DESY	61	115	4197	137	222	851	116	255	113	62	95	315	188	469	1294	4197
DLS	58	46	137	4407	102	810	30	267	399	33	52	229	192	546	1130	4407
ELETTRA	51	27	222	102	3167	433	11	77	35	20	18	179	367	141	900	3167
ESRF	281	179	851	810	433	10287	139	900	369	190	174	963	1286	1313	3586	10287
FRM-II	2	157	116	30	11	139	1095	347	137	89	161	33	29	509	259	1095
ILL	51	383	255	267	77	900	347	4649	731	301	395	156	222	1518	1347	4649
ISIS	13	198	113	399	35	369	137	731	2880	89	233	94	56	936	745	2880
LLB	5	98	62	33	20	190	89	301	89	1235	74	39	151	391	323	1235
SINQ	10	191	95	52	18	174	161	395	233	74	1219	224	31	590	415	1219
SLS	77	62	315	229	179	963	33	156	94	39	224	3827	399	371	1470	3827
SOLEIL	105	36	188	192	367	1286	29	222	56	151	31	399	4568	394	1817	4568
neutron	69	1563	469	546	141	1313	1095	4649	2880	1235	1219	371	394	10023	2334	10023
photon	773	329	4197	4407	3167	10287	259	1347	745	323	415	3827	4568	2334	25336	25336
all	773	1563	4197	4407	3167	10287	1095	4649	2880	1235	1219	3827	4568	10023	25336	33025


http://pan-data.eu/Users2012-Results

Implications?

- Traditionally the ends up on users disks
- There is a capacity/capability problem
 - Users can't move the data
 - Users can't store the data
 - Users can't process the data
- Experiments combine data from different institutions
- The facility needs to provide more support
- We need to "sweat the assets"
 - Maximise the science extracted from funding
- This needs to be accessible to the user is

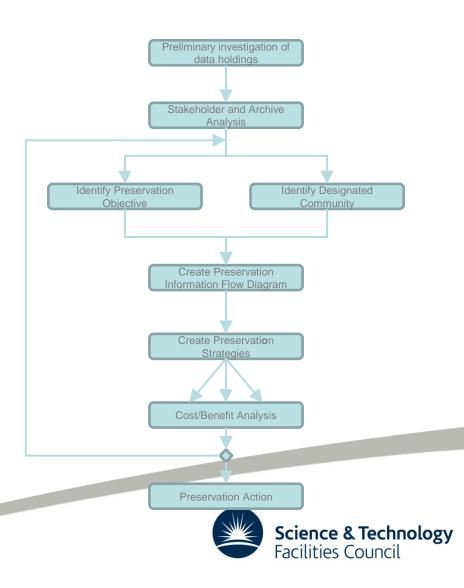
Post-experimental support

Infrastructure + Software + Expertise!

So what do we need to do?

- Store the data securely
 - Make it available to the right users
- Archive the data
 - Keep it safe for the "long" term
- Keep it usable
 - Maintain the context of the experiment
- Record how it is used
 - Record Provenance

- Record the Science undertaken
 - Data a means to an end


The Challenges of Preserving the Scientific Memory

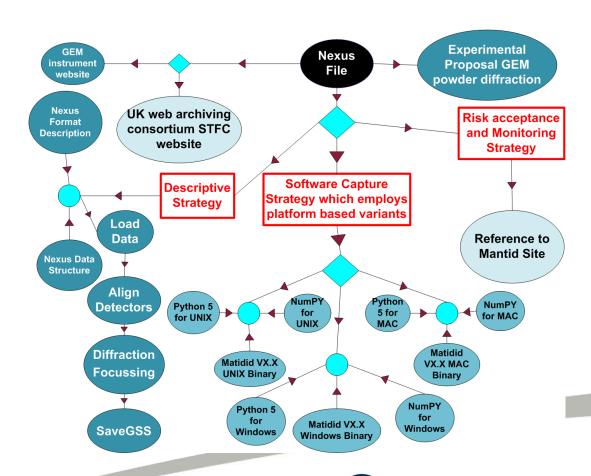
- Preservation Analysis
 - What to do with it
- Bit Preservation
 - How to maintain its integrity
- Cataloguing, access and publication
 - How to find and get it
- Preserving the science context
 - Knowing what the science meant
- Preserving provenance
 - Knowing what happened to it
- Preserving the science memory in a distributed environment
 - Knowing where it is

Preservation Analysis

- Why preserve the data?
 - Preservation BusinessCase:
 - Preservation Policy
 - Developing a Preservation Strategy
 - Preservation watch
- Progress on Policy
- Cost models much better understood
 - KRDS
- But we need to make the case to keep the data

Benefits analysis

Factors which affect the benefits accrued from keeping data


- Desirable
 - Is someone using it?
 - Are there measurable impacts?
- Reusable
 - Is it kept in a state where it can be accessed, understood and reused?

- Replaceable
 - Can I find an adequate substitute for the data elsewhere?
- Reproducible
 - Can the data be collected again? At what cost?

Preservation Strategies

- Detailed analysis of the digital assets
 - Inventories
 - Designated community
 - Preservation dependencies
 - Risk analysis
 - Quality assurance
 - Migration and emulation
 - Preservation actions
- Preservation Network Models
 - Esther Conway
- Still needs development into practise

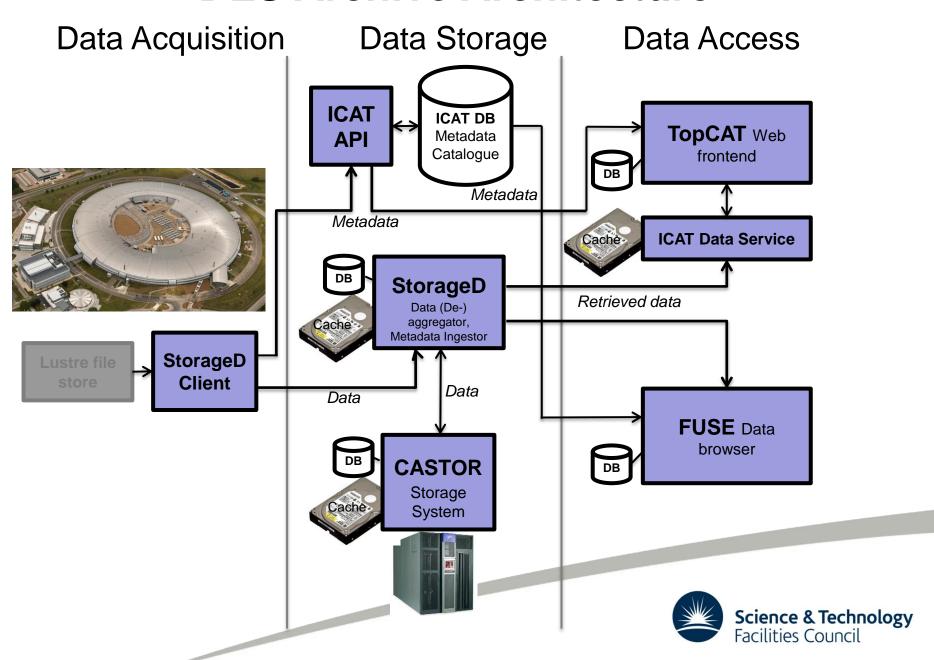
Bit Preservation

- Storage management
- Replication:.
- Integrity checking:
- Media refresh:,
- "business as usual"
 - We have to do it
 - We know what to do

Here's a copy of CCSDS 650.0. Its sane. Get on with it.

Norman Gray

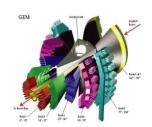
Challenges of Scale
Challenges of resource control



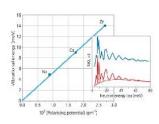
Cataloguing, access and publication

- This is core to big science
 - Needed for operationally managing data
- Automated into the process
 - Metadata as middleware
- Levels of metadata
 - Discovery
 - Understanding
 - Usage

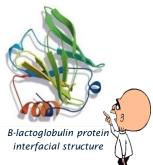
DLS Archive Architecture



- Secure access to user's data
- Flexible data searching
- Scalable and extensible architecture
- Integration with analysis tools
- Access to highperformance resources
- Linking to other scientific outputs
- Data policy aware



Central Facility



GEM - High intensity, high resolution neutron diffractometer

H2-(zeolite) vibrational frequencies vs polarising potential of cations

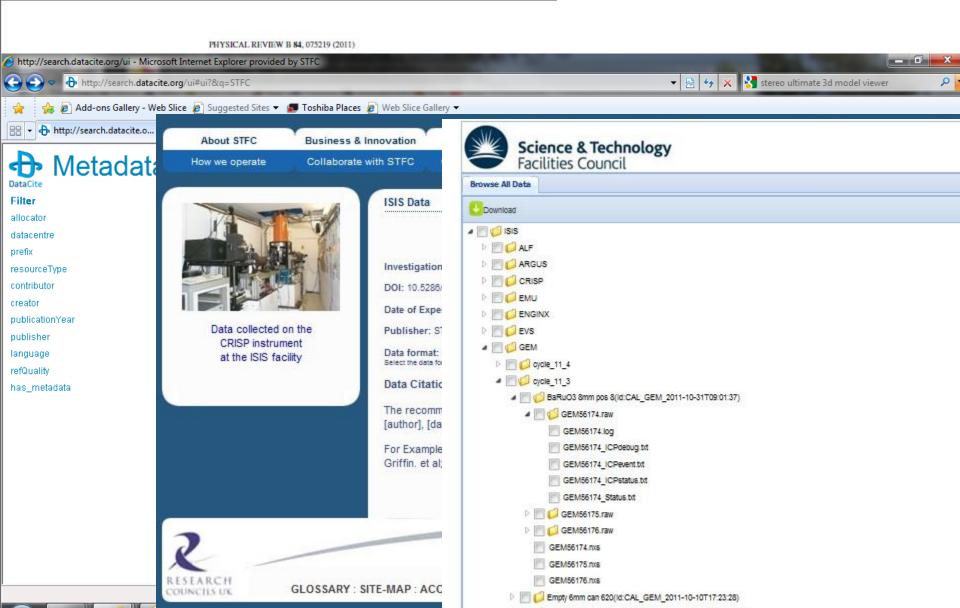
Proposals

Once awarded beamtime at ISIS, an entry will be created in ICAT that describes your proposed experiment.

Experiment

Data collected from your experiment will be indexed by ICAT (with additional experimental conditions) and made available to your experimental team

Analysed Data

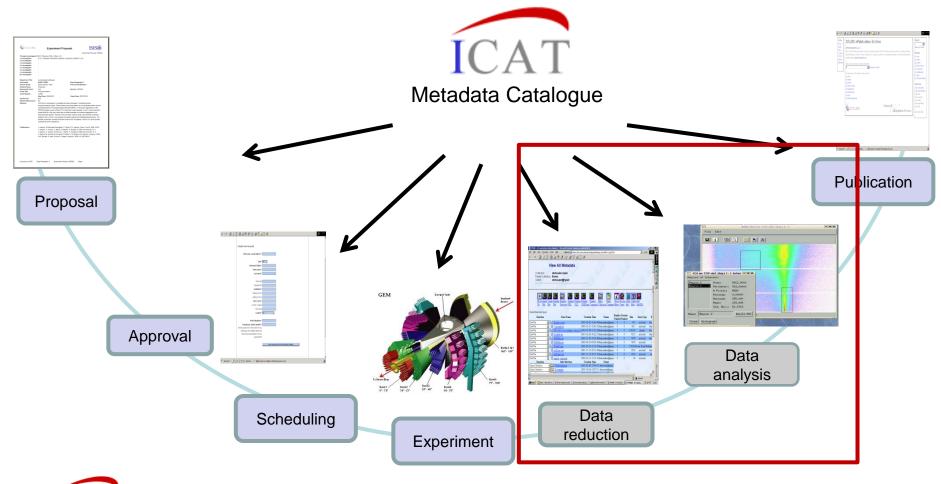

You will have the capability to upload any desired analysed data and associate it with your experiments.

Publication

Using ICAT you will also be able to associate publications to your experiment and even reference data from your publications.

Facilities Council

DOI Data Access Process



Science context and provenance

- We need to preserve the understanding of the science
 - Information about instruments, sensors, samples, data sampling conditions, parameters measured, coverage, units and data rates.
 - Information on intention, methodology, and actors
 - Information on the data collection environment
 - Calibration information on the instruments, with errors and tolerances
- Tacit knowledge concerning the science,
- And how the data is processed to generate conclusions
 - The relationships between artefacts used in the scientific process.
 - Different types of digital artefacts, :
 - data, software, visualisation, documents, and workflows

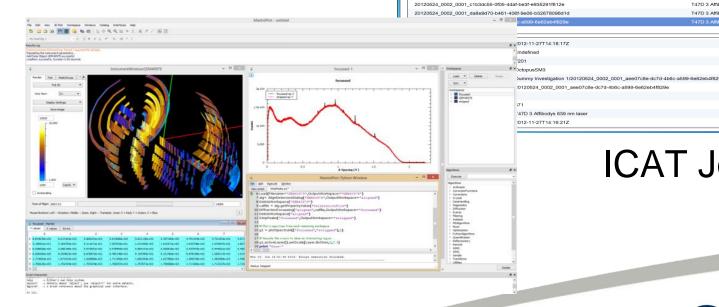
Facility Data Lifecycle

ICAT
http://www.icatproject.org

Traditionally, these steps are decoupled from facilities. However, they are key to derive useful insights.

Frameworks to capture provenance

Unknown instrumen


20120525 0004 0001 0bbb36de-dd79-4c13-84ca-72a6a86de334

20120524_0002_0001_e421cec3-d7eb-4e3f-baea-bf66fed31688

20120525_0004_0001_6e28e0b5-fe99-45a4-93d7-61a952a35912

Options ... Download Show Download UR

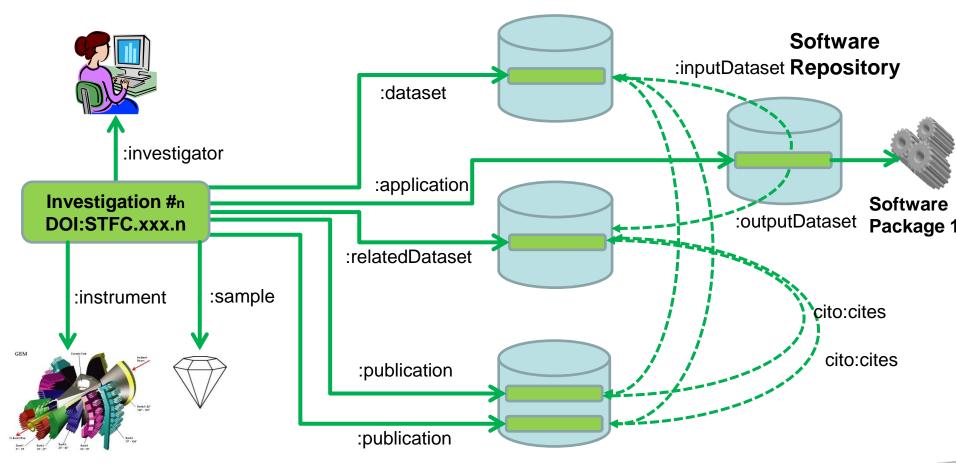
ICAT Job Portal

☆ ▽ C S - Google

tvs 639 nm lase

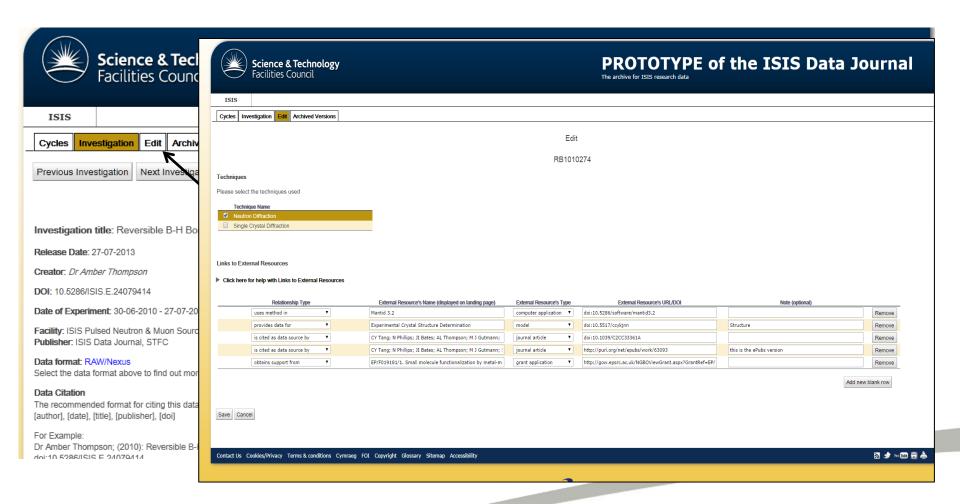
coloc 3 Affibodys T47D

T47D 3 Affibodys 639 nm laser


T47D 3 Affibodys 639 nm laser

T47D 3 Affibodys 639 nm laser

₽ 俞 閏 = ※


Investigation Research Objects: Record Experiments not Data

- Own metadata format (CSMD)
- OAI-ORE
- W3C Prov ontology
- Assume that the software is in a repository

Data Journal Mock up

Software preservation

SP Editor

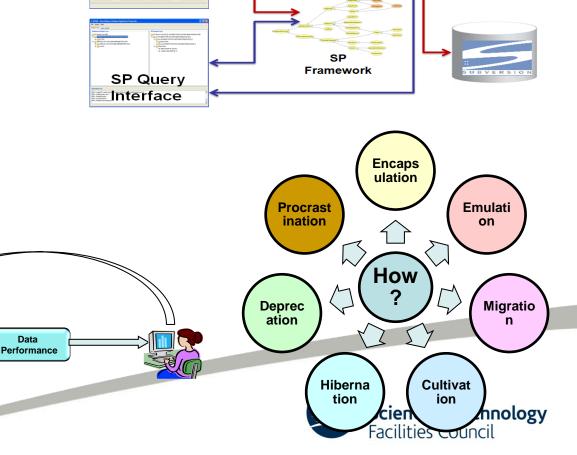
- We need to tackle the issue of preserving s/w
- **Exploratory study**
 - A framework for software preservation

Environment Compilation.

Software

Execution

Data


- SSI practical steps
- Combines with s/w engineering approaches

DOIs for software.

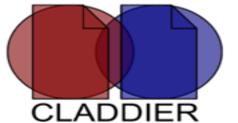
Software

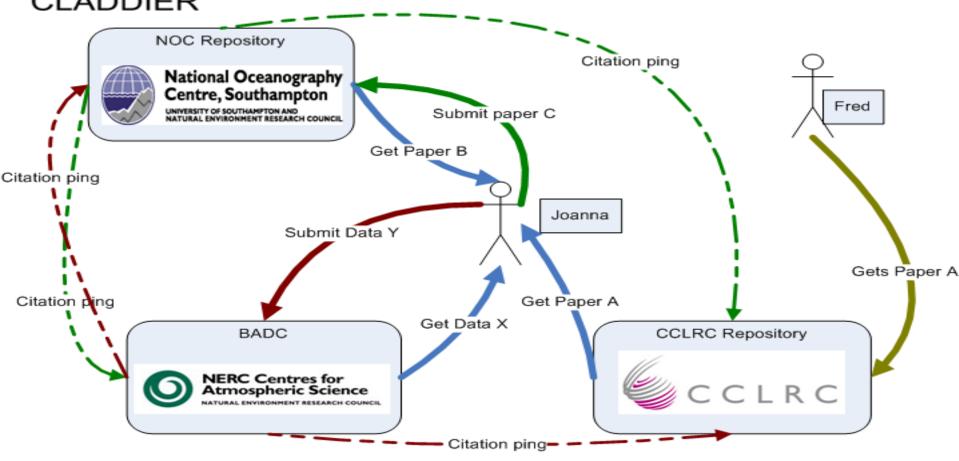
Components

Data

Tacit Knowledge

- Capturing the human knowledge associated with science.
 - Blogs,
 - Electronic notebooks
 - Open science
 - Social media
- Business knowledge management
 - Communities of practice
 - After action review
 - Storytelling


http://www.multicians.org/


Preserving the science memory in a distributed environment

- Research artefacts in different locations,
 - copies and versions in different places.
- Maintaining a link structure across repositories
 - under different jurisdictions
 - Different IPR and business models...
- Managing the trust relationships
 - guarantees on stability and quality.
- Attribution and rights management
 - credit can be properly assigned

Citation, Location and Deposition in Discipline and Institutional Repositories

Joanna gets data X and papers A and B for her research. Joanna submits a paper C to NOC. The repository automatically checks and notifies the cited repositories with a "citation ping"

Joanna submits data Y
to BADC. The data
archive automatically
checks and notifies the
cited repositories with a
"citation ping"

Fred gets the paper A from CCLRC. The paper "knows" it is cited in paper C and data Y.

Linking ISIS data

Small molecule functionalization by metal-mediated borylene transfer chemistry Lead Research Organisation: University of Oxford Department Name: Oxford Chemistry

Abstract

ISIS Beamtime Application: SXD Round: 2010 1

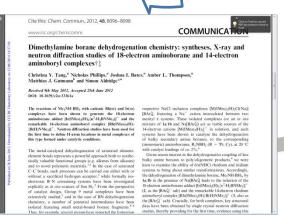
Crystallise research

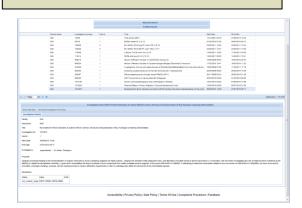
idea

RB1010274 Reversible B-H Bond Activation at Cationic Rh(III) Centres: Structural Characterization of Key Hydrogencontaining Intermediates

PI: Aldridge Dr S simon.aldridge@chem.ox.ac.uk University of Oxford Department of Chemistry

Perform research & gather data


Analyse collected data


Publish results

Manage & curate research data

studies, thereby providing for the first time, evidence using this

ISIS Data: persistent identifiers

What's changed?

- The "data deluge" has become true
 - Synchrotron and climate data will match LHC
- Sharing and publishing data recognised
 - High level data policy
 - Datacite
- Systematic data management become "standard"
 - Particularly in "big science"
 - But need to link to "bench science"

Outstanding challenges

- Scaling
 - Vs of big data
- Better cases for preserving data
 - Especially benefits of preservation
- User-oriented preservation infrastructures
 - Based around linked data for dependencies
- Systematic collection of context and provenance
 - Automation
 - Research Objects
- Software preservation
- Preservation of tacit knowledge

Preserving the scientific memory

Shift the focus to preserving the Science

brian.matthews@stfc.ac.uk

www.stfc.ac.uk/scd

